1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
//! A wrapper around the procedural macro API of the compiler's [`proc_macro`] //! crate. This library serves three purposes: //! //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/ //! //! - **Bring proc-macro-like functionality to other contexts like build.rs and //! main.rs.** Types from `proc_macro` are entirely specific to procedural //! macros and cannot ever exist in code outside of a procedural macro. //! Meanwhile `proc_macro2` types may exist anywhere including non-macro code. //! By developing foundational libraries like [syn] and [quote] against //! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem //! becomes easily applicable to many other use cases and we avoid //! reimplementing non-macro equivalents of those libraries. //! //! - **Make procedural macros unit testable.** As a consequence of being //! specific to procedural macros, nothing that uses `proc_macro` can be //! executed from a unit test. In order for helper libraries or components of //! a macro to be testable in isolation, they must be implemented using //! `proc_macro2`. //! //! - **Provide the latest and greatest APIs across all compiler versions.** //! Procedural macros were first introduced to Rust in 1.15.0 with an //! extremely minimal interface. Since then, many improvements have landed to //! make macros more flexible and easier to write. This library tracks the //! procedural macro API of the most recent stable compiler but employs a //! polyfill to provide that API consistently across any compiler since //! 1.15.0. //! //! [syn]: https://github.com/dtolnay/syn //! [quote]: https://github.com/dtolnay/quote //! //! # Usage //! //! The skeleton of a typical procedural macro typically looks like this: //! //! ```edition2018 //! extern crate proc_macro; //! //! # const IGNORE: &str = stringify! { //! #[proc_macro_derive(MyDerive)] //! # }; //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream { //! let input = proc_macro2::TokenStream::from(input); //! //! let output: proc_macro2::TokenStream = { //! /* transform input */ //! # input //! }; //! //! proc_macro::TokenStream::from(output) //! } //! ``` //! //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to //! propagate parse errors correctly back to the compiler when parsing fails. //! //! [`parse_macro_input!`]: https://docs.rs/syn/0.15/syn/macro.parse_macro_input.html //! //! # Unstable features //! //! The default feature set of proc-macro2 tracks the most recent stable //! compiler API. Functionality in `proc_macro` that is not yet stable is not //! exposed by proc-macro2 by default. //! //! To opt into the additional APIs available in the most recent nightly //! compiler, the `procmacro2_semver_exempt` config flag must be passed to //! rustc. As usual, we will polyfill those nightly-only APIs all the way back //! to Rust 1.15.0. As these are unstable APIs that track the nightly compiler, //! minor versions of proc-macro2 may make breaking changes to them at any time. //! //! ```sh //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build //! ``` //! //! Note that this must not only be done for your crate, but for any crate that //! depends on your crate. This infectious nature is intentional, as it serves //! as a reminder that you are outside of the normal semver guarantees. //! //! Semver exempt methods are marked as such in the proc-macro2 documentation. // Proc-macro2 types in rustdoc of other crates get linked to here. #![doc(html_root_url = "https://docs.rs/proc-macro2/0.4.27")] #![cfg_attr(nightly, feature(proc_macro_span))] #![cfg_attr(super_unstable, feature(proc_macro_raw_ident, proc_macro_def_site))] #[cfg(use_proc_macro)] extern crate proc_macro; extern crate unicode_xid; use std::cmp::Ordering; use std::fmt; use std::hash::{Hash, Hasher}; use std::iter::FromIterator; use std::marker; #[cfg(procmacro2_semver_exempt)] use std::path::PathBuf; use std::rc::Rc; use std::str::FromStr; #[macro_use] mod strnom; mod fallback; #[cfg(not(wrap_proc_macro))] use fallback as imp; #[path = "wrapper.rs"] #[cfg(wrap_proc_macro)] mod imp; /// An abstract stream of tokens, or more concretely a sequence of token trees. /// /// This type provides interfaces for iterating over token trees and for /// collecting token trees into one stream. /// /// Token stream is both the input and output of `#[proc_macro]`, /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions. #[derive(Clone)] pub struct TokenStream { inner: imp::TokenStream, _marker: marker::PhantomData<Rc<()>>, } /// Error returned from `TokenStream::from_str`. pub struct LexError { inner: imp::LexError, _marker: marker::PhantomData<Rc<()>>, } impl TokenStream { fn _new(inner: imp::TokenStream) -> TokenStream { TokenStream { inner: inner, _marker: marker::PhantomData, } } fn _new_stable(inner: fallback::TokenStream) -> TokenStream { TokenStream { inner: inner.into(), _marker: marker::PhantomData, } } /// Returns an empty `TokenStream` containing no token trees. pub fn new() -> TokenStream { TokenStream::_new(imp::TokenStream::new()) } #[deprecated(since = "0.4.4", note = "please use TokenStream::new")] pub fn empty() -> TokenStream { TokenStream::new() } /// Checks if this `TokenStream` is empty. pub fn is_empty(&self) -> bool { self.inner.is_empty() } } /// `TokenStream::default()` returns an empty stream, /// i.e. this is equivalent with `TokenStream::new()`. impl Default for TokenStream { fn default() -> Self { TokenStream::new() } } /// Attempts to break the string into tokens and parse those tokens into a token /// stream. /// /// May fail for a number of reasons, for example, if the string contains /// unbalanced delimiters or characters not existing in the language. /// /// NOTE: Some errors may cause panics instead of returning `LexError`. We /// reserve the right to change these errors into `LexError`s later. impl FromStr for TokenStream { type Err = LexError; fn from_str(src: &str) -> Result<TokenStream, LexError> { let e = src.parse().map_err(|e| LexError { inner: e, _marker: marker::PhantomData, })?; Ok(TokenStream::_new(e)) } } #[cfg(use_proc_macro)] impl From<proc_macro::TokenStream> for TokenStream { fn from(inner: proc_macro::TokenStream) -> TokenStream { TokenStream::_new(inner.into()) } } #[cfg(use_proc_macro)] impl From<TokenStream> for proc_macro::TokenStream { fn from(inner: TokenStream) -> proc_macro::TokenStream { inner.inner.into() } } impl Extend<TokenTree> for TokenStream { fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) { self.inner.extend(streams) } } impl Extend<TokenStream> for TokenStream { fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) { self.inner .extend(streams.into_iter().map(|stream| stream.inner)) } } /// Collects a number of token trees into a single stream. impl FromIterator<TokenTree> for TokenStream { fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self { TokenStream::_new(streams.into_iter().collect()) } } impl FromIterator<TokenStream> for TokenStream { fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self { TokenStream::_new(streams.into_iter().map(|i| i.inner).collect()) } } /// Prints the token stream as a string that is supposed to be losslessly /// convertible back into the same token stream (modulo spans), except for /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative /// numeric literals. impl fmt::Display for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } /// Prints token in a form convenient for debugging. impl fmt::Debug for TokenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } impl fmt::Debug for LexError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } /// The source file of a given `Span`. /// /// This type is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] #[derive(Clone, PartialEq, Eq)] pub struct SourceFile { inner: imp::SourceFile, _marker: marker::PhantomData<Rc<()>>, } #[cfg(procmacro2_semver_exempt)] impl SourceFile { fn _new(inner: imp::SourceFile) -> Self { SourceFile { inner: inner, _marker: marker::PhantomData, } } /// Get the path to this source file. /// /// ### Note /// /// If the code span associated with this `SourceFile` was generated by an /// external macro, this may not be an actual path on the filesystem. Use /// [`is_real`] to check. /// /// Also note that even if `is_real` returns `true`, if /// `--remap-path-prefix` was passed on the command line, the path as given /// may not actually be valid. /// /// [`is_real`]: #method.is_real pub fn path(&self) -> PathBuf { self.inner.path() } /// Returns `true` if this source file is a real source file, and not /// generated by an external macro's expansion. pub fn is_real(&self) -> bool { self.inner.is_real() } } #[cfg(procmacro2_semver_exempt)] impl fmt::Debug for SourceFile { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } /// A line-column pair representing the start or end of a `Span`. /// /// This type is semver exempt and not exposed by default. #[cfg(span_locations)] pub struct LineColumn { /// The 1-indexed line in the source file on which the span starts or ends /// (inclusive). pub line: usize, /// The 0-indexed column (in UTF-8 characters) in the source file on which /// the span starts or ends (inclusive). pub column: usize, } /// A region of source code, along with macro expansion information. #[derive(Copy, Clone)] pub struct Span { inner: imp::Span, _marker: marker::PhantomData<Rc<()>>, } impl Span { fn _new(inner: imp::Span) -> Span { Span { inner: inner, _marker: marker::PhantomData, } } fn _new_stable(inner: fallback::Span) -> Span { Span { inner: inner.into(), _marker: marker::PhantomData, } } /// The span of the invocation of the current procedural macro. /// /// Identifiers created with this span will be resolved as if they were /// written directly at the macro call location (call-site hygiene) and /// other code at the macro call site will be able to refer to them as well. pub fn call_site() -> Span { Span::_new(imp::Span::call_site()) } /// A span that resolves at the macro definition site. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn def_site() -> Span { Span::_new(imp::Span::def_site()) } /// Creates a new span with the same line/column information as `self` but /// that resolves symbols as though it were at `other`. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn resolved_at(&self, other: Span) -> Span { Span::_new(self.inner.resolved_at(other.inner)) } /// Creates a new span with the same name resolution behavior as `self` but /// with the line/column information of `other`. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn located_at(&self, other: Span) -> Span { Span::_new(self.inner.located_at(other.inner)) } /// Convert `proc_macro2::Span` to `proc_macro::Span`. /// /// This method is available when building with a nightly compiler, or when /// building with rustc 1.29+ *without* semver exempt features. /// /// # Panics /// /// Panics if called from outside of a procedural macro. Unlike /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within /// the context of a procedural macro invocation. #[cfg(wrap_proc_macro)] pub fn unwrap(self) -> proc_macro::Span { self.inner.unwrap() } // Soft deprecated. Please use Span::unwrap. #[cfg(wrap_proc_macro)] #[doc(hidden)] pub fn unstable(self) -> proc_macro::Span { self.unwrap() } /// The original source file into which this span points. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn source_file(&self) -> SourceFile { SourceFile::_new(self.inner.source_file()) } /// Get the starting line/column in the source file for this span. /// /// This method requires the `"span-locations"` feature to be enabled. #[cfg(span_locations)] pub fn start(&self) -> LineColumn { let imp::LineColumn { line, column } = self.inner.start(); LineColumn { line: line, column: column, } } /// Get the ending line/column in the source file for this span. /// /// This method requires the `"span-locations"` feature to be enabled. #[cfg(span_locations)] pub fn end(&self) -> LineColumn { let imp::LineColumn { line, column } = self.inner.end(); LineColumn { line: line, column: column, } } /// Create a new span encompassing `self` and `other`. /// /// Returns `None` if `self` and `other` are from different files. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn join(&self, other: Span) -> Option<Span> { self.inner.join(other.inner).map(Span::_new) } /// Compares to spans to see if they're equal. /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn eq(&self, other: &Span) -> bool { self.inner.eq(&other.inner) } } /// Prints a span in a form convenient for debugging. impl fmt::Debug for Span { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`). #[derive(Clone)] pub enum TokenTree { /// A token stream surrounded by bracket delimiters. Group(Group), /// An identifier. Ident(Ident), /// A single punctuation character (`+`, `,`, `$`, etc.). Punct(Punct), /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc. Literal(Literal), } impl TokenTree { /// Returns the span of this tree, delegating to the `span` method of /// the contained token or a delimited stream. pub fn span(&self) -> Span { match *self { TokenTree::Group(ref t) => t.span(), TokenTree::Ident(ref t) => t.span(), TokenTree::Punct(ref t) => t.span(), TokenTree::Literal(ref t) => t.span(), } } /// Configures the span for *only this token*. /// /// Note that if this token is a `Group` then this method will not configure /// the span of each of the internal tokens, this will simply delegate to /// the `set_span` method of each variant. pub fn set_span(&mut self, span: Span) { match *self { TokenTree::Group(ref mut t) => t.set_span(span), TokenTree::Ident(ref mut t) => t.set_span(span), TokenTree::Punct(ref mut t) => t.set_span(span), TokenTree::Literal(ref mut t) => t.set_span(span), } } } impl From<Group> for TokenTree { fn from(g: Group) -> TokenTree { TokenTree::Group(g) } } impl From<Ident> for TokenTree { fn from(g: Ident) -> TokenTree { TokenTree::Ident(g) } } impl From<Punct> for TokenTree { fn from(g: Punct) -> TokenTree { TokenTree::Punct(g) } } impl From<Literal> for TokenTree { fn from(g: Literal) -> TokenTree { TokenTree::Literal(g) } } /// Prints the token tree as a string that is supposed to be losslessly /// convertible back into the same token tree (modulo spans), except for /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative /// numeric literals. impl fmt::Display for TokenTree { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { TokenTree::Group(ref t) => t.fmt(f), TokenTree::Ident(ref t) => t.fmt(f), TokenTree::Punct(ref t) => t.fmt(f), TokenTree::Literal(ref t) => t.fmt(f), } } } /// Prints token tree in a form convenient for debugging. impl fmt::Debug for TokenTree { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { // Each of these has the name in the struct type in the derived debug, // so don't bother with an extra layer of indirection match *self { TokenTree::Group(ref t) => t.fmt(f), TokenTree::Ident(ref t) => { let mut debug = f.debug_struct("Ident"); debug.field("sym", &format_args!("{}", t)); imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner); debug.finish() } TokenTree::Punct(ref t) => t.fmt(f), TokenTree::Literal(ref t) => t.fmt(f), } } } /// A delimited token stream. /// /// A `Group` internally contains a `TokenStream` which is surrounded by /// `Delimiter`s. #[derive(Clone)] pub struct Group { inner: imp::Group, } /// Describes how a sequence of token trees is delimited. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum Delimiter { /// `( ... )` Parenthesis, /// `{ ... }` Brace, /// `[ ... ]` Bracket, /// `Ø ... Ø` /// /// An implicit delimiter, that may, for example, appear around tokens /// coming from a "macro variable" `$var`. It is important to preserve /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`. /// Implicit delimiters may not survive roundtrip of a token stream through /// a string. None, } impl Group { fn _new(inner: imp::Group) -> Self { Group { inner: inner } } fn _new_stable(inner: fallback::Group) -> Self { Group { inner: inner.into(), } } /// Creates a new `Group` with the given delimiter and token stream. /// /// This constructor will set the span for this group to /// `Span::call_site()`. To change the span you can use the `set_span` /// method below. pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group { Group { inner: imp::Group::new(delimiter, stream.inner), } } /// Returns the delimiter of this `Group` pub fn delimiter(&self) -> Delimiter { self.inner.delimiter() } /// Returns the `TokenStream` of tokens that are delimited in this `Group`. /// /// Note that the returned token stream does not include the delimiter /// returned above. pub fn stream(&self) -> TokenStream { TokenStream::_new(self.inner.stream()) } /// Returns the span for the delimiters of this token stream, spanning the /// entire `Group`. /// /// ```text /// pub fn span(&self) -> Span { /// ^^^^^^^ /// ``` pub fn span(&self) -> Span { Span::_new(self.inner.span()) } /// Returns the span pointing to the opening delimiter of this group. /// /// ```text /// pub fn span_open(&self) -> Span { /// ^ /// ``` #[cfg(procmacro2_semver_exempt)] pub fn span_open(&self) -> Span { Span::_new(self.inner.span_open()) } /// Returns the span pointing to the closing delimiter of this group. /// /// ```text /// pub fn span_close(&self) -> Span { /// ^ /// ``` #[cfg(procmacro2_semver_exempt)] pub fn span_close(&self) -> Span { Span::_new(self.inner.span_close()) } /// Configures the span for this `Group`'s delimiters, but not its internal /// tokens. /// /// This method will **not** set the span of all the internal tokens spanned /// by this group, but rather it will only set the span of the delimiter /// tokens at the level of the `Group`. pub fn set_span(&mut self, span: Span) { self.inner.set_span(span.inner) } } /// Prints the group as a string that should be losslessly convertible back /// into the same group (modulo spans), except for possibly `TokenTree::Group`s /// with `Delimiter::None` delimiters. impl fmt::Display for Group { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.inner, formatter) } } impl fmt::Debug for Group { fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&self.inner, formatter) } } /// An `Punct` is an single punctuation character like `+`, `-` or `#`. /// /// Multicharacter operators like `+=` are represented as two instances of /// `Punct` with different forms of `Spacing` returned. #[derive(Clone)] pub struct Punct { op: char, spacing: Spacing, span: Span, } /// Whether an `Punct` is followed immediately by another `Punct` or followed by /// another token or whitespace. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum Spacing { /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`. Alone, /// E.g. `+` is `Joint` in `+=` or `'#`. /// /// Additionally, single quote `'` can join with identifiers to form /// lifetimes `'ident`. Joint, } impl Punct { /// Creates a new `Punct` from the given character and spacing. /// /// The `ch` argument must be a valid punctuation character permitted by the /// language, otherwise the function will panic. /// /// The returned `Punct` will have the default span of `Span::call_site()` /// which can be further configured with the `set_span` method below. pub fn new(op: char, spacing: Spacing) -> Punct { Punct { op: op, spacing: spacing, span: Span::call_site(), } } /// Returns the value of this punctuation character as `char`. pub fn as_char(&self) -> char { self.op } /// Returns the spacing of this punctuation character, indicating whether /// it's immediately followed by another `Punct` in the token stream, so /// they can potentially be combined into a multicharacter operator /// (`Joint`), or it's followed by some other token or whitespace (`Alone`) /// so the operator has certainly ended. pub fn spacing(&self) -> Spacing { self.spacing } /// Returns the span for this punctuation character. pub fn span(&self) -> Span { self.span } /// Configure the span for this punctuation character. pub fn set_span(&mut self, span: Span) { self.span = span; } } /// Prints the punctuation character as a string that should be losslessly /// convertible back into the same character. impl fmt::Display for Punct { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.op.fmt(f) } } impl fmt::Debug for Punct { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { let mut debug = fmt.debug_struct("Punct"); debug.field("op", &self.op); debug.field("spacing", &self.spacing); imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner); debug.finish() } } /// A word of Rust code, which may be a keyword or legal variable name. /// /// An identifier consists of at least one Unicode code point, the first of /// which has the XID_Start property and the rest of which have the XID_Continue /// property. /// /// - The empty string is not an identifier. Use `Option<Ident>`. /// - A lifetime is not an identifier. Use `syn::Lifetime` instead. /// /// An identifier constructed with `Ident::new` is permitted to be a Rust /// keyword, though parsing one through its [`Parse`] implementation rejects /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the /// behaviour of `Ident::new`. /// /// [`Parse`]: https://docs.rs/syn/0.15/syn/parse/trait.Parse.html /// /// # Examples /// /// A new ident can be created from a string using the `Ident::new` function. /// A span must be provided explicitly which governs the name resolution /// behavior of the resulting identifier. /// /// ```edition2018 /// use proc_macro2::{Ident, Span}; /// /// fn main() { /// let call_ident = Ident::new("calligraphy", Span::call_site()); /// /// println!("{}", call_ident); /// } /// ``` /// /// An ident can be interpolated into a token stream using the `quote!` macro. /// /// ```edition2018 /// use proc_macro2::{Ident, Span}; /// use quote::quote; /// /// fn main() { /// let ident = Ident::new("demo", Span::call_site()); /// /// // Create a variable binding whose name is this ident. /// let expanded = quote! { let #ident = 10; }; /// /// // Create a variable binding with a slightly different name. /// let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site()); /// let expanded = quote! { let #temp_ident = 10; }; /// } /// ``` /// /// A string representation of the ident is available through the `to_string()` /// method. /// /// ```edition2018 /// # use proc_macro2::{Ident, Span}; /// # /// # let ident = Ident::new("another_identifier", Span::call_site()); /// # /// // Examine the ident as a string. /// let ident_string = ident.to_string(); /// if ident_string.len() > 60 { /// println!("Very long identifier: {}", ident_string) /// } /// ``` #[derive(Clone)] pub struct Ident { inner: imp::Ident, _marker: marker::PhantomData<Rc<()>>, } impl Ident { fn _new(inner: imp::Ident) -> Ident { Ident { inner: inner, _marker: marker::PhantomData, } } /// Creates a new `Ident` with the given `string` as well as the specified /// `span`. /// /// The `string` argument must be a valid identifier permitted by the /// language, otherwise the function will panic. /// /// Note that `span`, currently in rustc, configures the hygiene information /// for this identifier. /// /// As of this time `Span::call_site()` explicitly opts-in to "call-site" /// hygiene meaning that identifiers created with this span will be resolved /// as if they were written directly at the location of the macro call, and /// other code at the macro call site will be able to refer to them as well. /// /// Later spans like `Span::def_site()` will allow to opt-in to /// "definition-site" hygiene meaning that identifiers created with this /// span will be resolved at the location of the macro definition and other /// code at the macro call site will not be able to refer to them. /// /// Due to the current importance of hygiene this constructor, unlike other /// tokens, requires a `Span` to be specified at construction. /// /// # Panics /// /// Panics if the input string is neither a keyword nor a legal variable /// name. pub fn new(string: &str, span: Span) -> Ident { Ident::_new(imp::Ident::new(string, span.inner)) } /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). /// /// This method is semver exempt and not exposed by default. #[cfg(procmacro2_semver_exempt)] pub fn new_raw(string: &str, span: Span) -> Ident { Ident::_new_raw(string, span) } fn _new_raw(string: &str, span: Span) -> Ident { Ident::_new(imp::Ident::new_raw(string, span.inner)) } /// Returns the span of this `Ident`. pub fn span(&self) -> Span { Span::_new(self.inner.span()) } /// Configures the span of this `Ident`, possibly changing its hygiene /// context. pub fn set_span(&mut self, span: Span) { self.inner.set_span(span.inner); } } impl PartialEq for Ident { fn eq(&self, other: &Ident) -> bool { self.inner == other.inner } } impl<T> PartialEq<T> for Ident where T: ?Sized + AsRef<str>, { fn eq(&self, other: &T) -> bool { self.inner == other } } impl Eq for Ident {} impl PartialOrd for Ident { fn partial_cmp(&self, other: &Ident) -> Option<Ordering> { Some(self.cmp(other)) } } impl Ord for Ident { fn cmp(&self, other: &Ident) -> Ordering { self.to_string().cmp(&other.to_string()) } } impl Hash for Ident { fn hash<H: Hasher>(&self, hasher: &mut H) { self.to_string().hash(hasher) } } /// Prints the identifier as a string that should be losslessly convertible back /// into the same identifier. impl fmt::Display for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } impl fmt::Debug for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`), /// byte character (`b'a'`), an integer or floating point number with or without /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`). /// /// Boolean literals like `true` and `false` do not belong here, they are /// `Ident`s. #[derive(Clone)] pub struct Literal { inner: imp::Literal, _marker: marker::PhantomData<Rc<()>>, } macro_rules! suffixed_int_literals { ($($name:ident => $kind:ident,)*) => ($( /// Creates a new suffixed integer literal with the specified value. /// /// This function will create an integer like `1u32` where the integer /// value specified is the first part of the token and the integral is /// also suffixed at the end. Literals created from negative numbers may /// not survive rountrips through `TokenStream` or strings and may be /// broken into two tokens (`-` and positive literal). /// /// Literals created through this method have the `Span::call_site()` /// span by default, which can be configured with the `set_span` method /// below. pub fn $name(n: $kind) -> Literal { Literal::_new(imp::Literal::$name(n)) } )*) } macro_rules! unsuffixed_int_literals { ($($name:ident => $kind:ident,)*) => ($( /// Creates a new unsuffixed integer literal with the specified value. /// /// This function will create an integer like `1` where the integer /// value specified is the first part of the token. No suffix is /// specified on this token, meaning that invocations like /// `Literal::i8_unsuffixed(1)` are equivalent to /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers /// may not survive rountrips through `TokenStream` or strings and may /// be broken into two tokens (`-` and positive literal). /// /// Literals created through this method have the `Span::call_site()` /// span by default, which can be configured with the `set_span` method /// below. pub fn $name(n: $kind) -> Literal { Literal::_new(imp::Literal::$name(n)) } )*) } impl Literal { fn _new(inner: imp::Literal) -> Literal { Literal { inner: inner, _marker: marker::PhantomData, } } fn _new_stable(inner: fallback::Literal) -> Literal { Literal { inner: inner.into(), _marker: marker::PhantomData, } } suffixed_int_literals! { u8_suffixed => u8, u16_suffixed => u16, u32_suffixed => u32, u64_suffixed => u64, usize_suffixed => usize, i8_suffixed => i8, i16_suffixed => i16, i32_suffixed => i32, i64_suffixed => i64, isize_suffixed => isize, } #[cfg(u128)] suffixed_int_literals! { u128_suffixed => u128, i128_suffixed => i128, } unsuffixed_int_literals! { u8_unsuffixed => u8, u16_unsuffixed => u16, u32_unsuffixed => u32, u64_unsuffixed => u64, usize_unsuffixed => usize, i8_unsuffixed => i8, i16_unsuffixed => i16, i32_unsuffixed => i32, i64_unsuffixed => i64, isize_unsuffixed => isize, } #[cfg(u128)] unsuffixed_int_literals! { u128_unsuffixed => u128, i128_unsuffixed => i128, } pub fn f64_unsuffixed(f: f64) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f64_unsuffixed(f)) } pub fn f64_suffixed(f: f64) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f64_suffixed(f)) } /// Creates a new unsuffixed floating-point literal. /// /// This constructor is similar to those like `Literal::i8_unsuffixed` where /// the float's value is emitted directly into the token but no suffix is /// used, so it may be inferred to be a `f64` later in the compiler. /// Literals created from negative numbers may not survive rountrips through /// `TokenStream` or strings and may be broken into two tokens (`-` and /// positive literal). /// /// # Panics /// /// This function requires that the specified float is finite, for example /// if it is infinity or NaN this function will panic. pub fn f32_unsuffixed(f: f32) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f32_unsuffixed(f)) } pub fn f32_suffixed(f: f32) -> Literal { assert!(f.is_finite()); Literal::_new(imp::Literal::f32_suffixed(f)) } pub fn string(string: &str) -> Literal { Literal::_new(imp::Literal::string(string)) } pub fn character(ch: char) -> Literal { Literal::_new(imp::Literal::character(ch)) } pub fn byte_string(s: &[u8]) -> Literal { Literal::_new(imp::Literal::byte_string(s)) } pub fn span(&self) -> Span { Span::_new(self.inner.span()) } pub fn set_span(&mut self, span: Span) { self.inner.set_span(span.inner); } } impl fmt::Debug for Literal { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } impl fmt::Display for Literal { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } /// Public implementation details for the `TokenStream` type, such as iterators. pub mod token_stream { use std::fmt; use std::marker; use std::rc::Rc; use imp; pub use TokenStream; use TokenTree; /// An iterator over `TokenStream`'s `TokenTree`s. /// /// The iteration is "shallow", e.g. the iterator doesn't recurse into /// delimited groups, and returns whole groups as token trees. pub struct IntoIter { inner: imp::TokenTreeIter, _marker: marker::PhantomData<Rc<()>>, } impl Iterator for IntoIter { type Item = TokenTree; fn next(&mut self) -> Option<TokenTree> { self.inner.next() } } impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } impl IntoIterator for TokenStream { type Item = TokenTree; type IntoIter = IntoIter; fn into_iter(self) -> IntoIter { IntoIter { inner: self.inner.into_iter(), _marker: marker::PhantomData, } } } }