1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
pub(crate) mod background;
pub(crate) mod registration;
mod sharded_rwlock;

// ===== Public re-exports =====

use self::background::Background;
pub use crate::raw::PollEvented;

// ===== Private imports =====

use self::sharded_rwlock::RwLock;

use std::cell::RefCell;
use std::io;
use std::mem;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{Relaxed, SeqCst};
use std::sync::{Arc, Weak};
use std::time::{Duration, Instant};
use std::{fmt, usize};

use futures::task::{AtomicWaker, Context};
use log::{debug, log_enabled, trace, Level};
use mio::event::Evented;
use slab::Slab;

/// The core reactor, or event loop.
///
/// The event loop is the main source of blocking in an application which drives
/// all other I/O events and notifications happening. Each event loop can have
/// multiple handles pointing to it, each of which can then be used to create
/// various I/O objects to interact with the event loop in interesting ways.
struct Reactor {
    /// Reuse the `mio::Events` value across calls to poll.
    events: mio::Events,

    /// State shared between the reactor and the handles.
    inner: Arc<Inner>,

    _wakeup_registration: mio::Registration,
}

/// A reference to a reactor.
///
/// A `Handle` is used for associating I/O objects with an event loop
/// explicitly. Typically though you won't end up using a `Handle` that often
/// and will instead use the default reactor for the execution context.
///
/// By default, most components bind lazily to reactors.
/// To get this behavior when manually passing a `Handle`, use `default()`.
#[derive(Clone)]
struct Handle {
    inner: Option<HandlePriv>,
}

/// Like `Handle`, but never `None`.
#[derive(Clone)]
struct HandlePriv {
    inner: Weak<Inner>,
}

/// Return value from the `turn` method on `Reactor`.
///
/// Currently this value doesn't actually provide any functionality, but it may
/// in the future give insight into what happened during `turn`.
#[derive(Debug)]
struct Turn {
    _priv: (),
}

#[test]
fn test_handle_size() {
    use std::mem;
    assert_eq!(mem::size_of::<Handle>(), mem::size_of::<HandlePriv>());
}

struct Inner {
    /// The underlying system event queue.
    io: mio::Poll,

    /// ABA guard counter
    next_aba_guard: AtomicUsize,

    /// Dispatch slabs for I/O and futures events
    io_dispatch: RwLock<Slab<ScheduledIo>>,

    /// Used to wake up the reactor from a call to `turn`
    wakeup: mio::SetReadiness,
}

struct ScheduledIo {
    aba_guard: usize,
    readiness: AtomicUsize,
    reader: AtomicWaker,
    writer: AtomicWaker,
}

#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub(crate) enum Direction {
    Read,
    Write,
}

/// The global fallback reactor.
static HANDLE_FALLBACK: AtomicUsize = AtomicUsize::new(0);

// Tracks the reactor for the current execution context.
thread_local!(static CURRENT_REACTOR: RefCell<Option<HandlePriv>> = RefCell::new(None));

const TOKEN_SHIFT: usize = 22;

// Kind of arbitrary, but this reserves some token space for later usage.
const MAX_SOURCES: usize = (1 << TOKEN_SHIFT) - 1;
const TOKEN_WAKEUP: mio::Token = mio::Token(MAX_SOURCES);

fn _assert_kinds() {
    fn _assert<T: Send + Sync>() {}

    _assert::<Handle>();
}

// ===== impl Reactor =====

impl Reactor {
    /// Creates a new event loop, returning any error that happened during the
    /// creation.
    fn new() -> io::Result<Reactor> {
        let io = mio::Poll::new()?;
        let wakeup_pair = mio::Registration::new2();

        io.register(
            &wakeup_pair.0,
            TOKEN_WAKEUP,
            mio::Ready::readable(),
            mio::PollOpt::level(),
        )?;

        Ok(Reactor {
            events: mio::Events::with_capacity(1024),
            _wakeup_registration: wakeup_pair.0,
            inner: Arc::new(Inner {
                io: io,
                next_aba_guard: AtomicUsize::new(0),
                io_dispatch: RwLock::new(Slab::with_capacity(1)),
                wakeup: wakeup_pair.1,
            }),
        })
    }

    /// Returns a handle to this event loop which can be sent across threads
    /// and can be used as a proxy to the event loop itself.
    ///
    /// Handles are cloneable and clones always refer to the same event loop.
    /// This handle is typically passed into functions that create I/O objects
    /// to bind them to this event loop.
    fn handle(&self) -> Handle {
        Handle {
            inner: Some(HandlePriv {
                inner: Arc::downgrade(&self.inner),
            }),
        }
    }

    /// Performs one iteration of the event loop, blocking on waiting for events
    /// for at most `max_wait` (forever if `None`).
    ///
    /// This method is the primary method of running this reactor and processing
    /// I/O events that occur. This method executes one iteration of an event
    /// loop, blocking at most once waiting for events to happen.
    ///
    /// If a `max_wait` is specified then the method should block no longer than
    /// the duration specified, but this shouldn't be used as a super-precise
    /// timer but rather a "ballpark approximation"
    ///
    /// # Return value
    ///
    /// This function returns an instance of `Turn`
    ///
    /// `Turn` as of today has no extra information with it and can be safely
    /// discarded.  In the future `Turn` may contain information about what
    /// happened while this reactor blocked.
    ///
    /// # Errors
    ///
    /// This function may also return any I/O error which occurs when polling
    /// for readiness of I/O objects with the OS. This is quite unlikely to
    /// arise and typically mean that things have gone horribly wrong at that
    /// point. Currently this is primarily only known to happen for internal
    /// bugs to `tokio` itself.
    fn turn(&mut self, max_wait: Option<Duration>) -> io::Result<Turn> {
        self.poll(max_wait)?;
        Ok(Turn { _priv: () })
    }

    /// Returns true if the reactor is currently idle.
    ///
    /// Idle is defined as all tasks that have been spawned have completed,
    /// either successfully or with an error.
    fn is_idle(&self) -> bool {
        self.inner.io_dispatch.read().is_empty()
    }

    /// Run this reactor on a background thread.
    ///
    /// This function takes ownership, spawns a new thread, and moves the
    /// reactor to this new thread. It then runs the reactor, driving all
    /// associated I/O resources, until the `Background` handle is dropped or
    /// explicitly shutdown.
    fn background(self) -> io::Result<Background> {
        Background::new(self)
    }

    fn poll(&mut self, max_wait: Option<Duration>) -> io::Result<()> {
        // Block waiting for an event to happen, peeling out how many events
        // happened.
        match self.inner.io.poll(&mut self.events, max_wait) {
            Ok(_) => {}
            Err(e) => return Err(e),
        }

        let start = if log_enabled!(Level::Debug) {
            Some(Instant::now())
        } else {
            None
        };

        // Process all the events that came in, dispatching appropriately
        let mut events = 0;
        for event in self.events.iter() {
            events += 1;
            let token = event.token();
            trace!("event {:?} {:?}", event.readiness(), event.token());

            if token == TOKEN_WAKEUP {
                self.inner
                    .wakeup
                    .set_readiness(mio::Ready::empty())
                    .unwrap();
            } else {
                self.dispatch(token, event.readiness());
            }
        }

        if let Some(start) = start {
            let dur = start.elapsed();
            trace!(
                "loop process - {} events, {}.{:03}s",
                events,
                dur.as_secs(),
                dur.subsec_nanos() / 1_000_000
            );
        }

        Ok(())
    }

    fn dispatch(&self, token: mio::Token, ready: mio::Ready) {
        let aba_guard = token.0 & !MAX_SOURCES;
        let token = token.0 & MAX_SOURCES;

        let mut rd = None;
        let mut wr = None;

        // Create a scope to ensure that notifying the tasks stays out of the
        // lock's critical section.
        {
            let io_dispatch = self.inner.io_dispatch.read();

            let io = match io_dispatch.get(token) {
                Some(io) => io,
                None => return,
            };

            if aba_guard != io.aba_guard {
                return;
            }

            io.readiness.fetch_or(ready.as_usize(), Relaxed);

            if ready.is_writable() || platform::is_hup(&ready) {
                wr = io.writer.take();
            }

            if !(ready & (!mio::Ready::writable())).is_empty() {
                rd = io.reader.take();
            }
        }

        if let Some(task) = rd {
            task.wake();
        }

        if let Some(task) = wr {
            task.wake();
        }
    }
}

impl fmt::Debug for Reactor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Reactor")
    }
}

// ===== impl Handle =====

impl Handle {
    fn as_priv(&self) -> Option<&HandlePriv> {
        self.inner.as_ref()
    }

    fn into_priv(self) -> Option<HandlePriv> {
        self.inner
    }

    fn wakeup(&self) {
        if let Some(handle) = self.as_priv() {
            handle.wakeup();
        }
    }
}

impl Default for Handle {
    /// Returns a "default" handle, i.e., a handle that lazily binds to a reactor.
    fn default() -> Handle {
        Handle { inner: None }
    }
}

impl fmt::Debug for Handle {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Handle")
    }
}

fn set_fallback(handle: HandlePriv) -> Result<(), ()> {
    unsafe {
        let val = handle.into_usize();
        match HANDLE_FALLBACK.compare_exchange(0, val, SeqCst, SeqCst) {
            Ok(_) => Ok(()),
            Err(_) => {
                drop(HandlePriv::from_usize(val));
                Err(())
            }
        }
    }
}

// ===== impl HandlePriv =====

impl HandlePriv {
    /// Try to get a handle to the current reactor.
    ///
    /// Returns `Err` if no handle is found.
    pub(crate) fn try_current() -> io::Result<HandlePriv> {
        CURRENT_REACTOR.with(|current| match *current.borrow() {
            Some(ref handle) => Ok(handle.clone()),
            None => HandlePriv::fallback(),
        })
    }

    /// Returns a handle to the fallback reactor.
    fn fallback() -> io::Result<HandlePriv> {
        let mut fallback = HANDLE_FALLBACK.load(SeqCst);

        // If the fallback hasn't been previously initialized then let's spin
        // up a helper thread and try to initialize with that. If we can't
        // actually create a helper thread then we'll just return a "defunct"
        // handle which will return errors when I/O objects are attempted to be
        // associated.
        if fallback == 0 {
            let reactor = match Reactor::new() {
                Ok(reactor) => reactor,
                Err(_) => {
                    return Err(io::Error::new(
                        io::ErrorKind::Other,
                        "failed to create reactor",
                    ))
                }
            };

            // If we successfully set ourselves as the actual fallback then we
            // want to `forget` the helper thread to ensure that it persists
            // globally. If we fail to set ourselves as the fallback that means
            // that someone was racing with this call to `Handle::default`.
            // They ended up winning so we'll destroy our helper thread (which
            // shuts down the thread) and reload the fallback.
            if set_fallback(reactor.handle().into_priv().unwrap()).is_ok() {
                let ret = reactor.handle().into_priv().unwrap();

                match reactor.background() {
                    Ok(bg) => bg.forget(),
                    // The global handle is fubar, but y'all probably got bigger
                    // problems if a thread can't spawn.
                    Err(_) => {}
                }

                return Ok(ret);
            }

            fallback = HANDLE_FALLBACK.load(SeqCst);
        }

        // At this point our fallback handle global was configured so we use
        // its value to reify a handle, clone it, and then forget our reified
        // handle as we don't actually have an owning reference to it.
        assert!(fallback != 0);

        let ret = unsafe {
            let handle = HandlePriv::from_usize(fallback);
            let ret = handle.clone();

            // This prevents `handle` from being dropped and having the ref
            // count decremented.
            drop(handle.into_usize());

            ret
        };

        Ok(ret)
    }

    /// Forces a reactor blocked in a call to `turn` to wakeup, or otherwise
    /// makes the next call to `turn` return immediately.
    ///
    /// This method is intended to be used in situations where a notification
    /// needs to otherwise be sent to the main reactor. If the reactor is
    /// currently blocked inside of `turn` then it will wake up and soon return
    /// after this method has been called. If the reactor is not currently
    /// blocked in `turn`, then the next call to `turn` will not block and
    /// return immediately.
    fn wakeup(&self) {
        if let Some(inner) = self.inner() {
            inner.wakeup.set_readiness(mio::Ready::readable()).unwrap();
        }
    }

    fn into_usize(self) -> usize {
        unsafe { mem::transmute::<Weak<Inner>, usize>(self.inner) }
    }

    unsafe fn from_usize(val: usize) -> HandlePriv {
        let inner = mem::transmute::<usize, Weak<Inner>>(val);;
        HandlePriv { inner }
    }

    fn inner(&self) -> Option<Arc<Inner>> {
        self.inner.upgrade()
    }
}

impl fmt::Debug for HandlePriv {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "HandlePriv")
    }
}

// ===== impl Inner =====

impl Inner {
    /// Register an I/O resource with the reactor.
    ///
    /// The registration token is returned.
    fn add_source(&self, source: &dyn Evented) -> io::Result<usize> {
        // Get an ABA guard value
        let aba_guard = self.next_aba_guard.fetch_add(1 << TOKEN_SHIFT, Relaxed);

        let mut io_dispatch = self.io_dispatch.write();

        if io_dispatch.len() == MAX_SOURCES {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                "reactor at max \
                 registered I/O resources",
            ));
        }

        // Acquire a write lock
        let key = io_dispatch.insert(ScheduledIo {
            aba_guard,
            readiness: AtomicUsize::new(0),
            reader: AtomicWaker::new(),
            writer: AtomicWaker::new(),
        });

        self.io.register(
            source,
            mio::Token(aba_guard | key),
            mio::Ready::all(),
            mio::PollOpt::edge(),
        )?;

        Ok(key)
    }

    /// Deregisters an I/O resource from the reactor.
    fn deregister_source(&self, source: &dyn Evented) -> io::Result<()> {
        self.io.deregister(source)
    }

    fn drop_source(&self, token: usize) {
        debug!("dropping I/O source: {}", token);
        self.io_dispatch.write().remove(token);
    }

    /// Registers interest in the I/O resource associated with `token`.
    fn register(&self, cx: &mut Context<'_>, token: usize, dir: Direction) {
        debug!("scheduling direction for: {}", token);
        let io_dispatch = self.io_dispatch.read();
        let sched = io_dispatch.get(token).unwrap();

        let (atomic_waker, ready) = match dir {
            Direction::Read => (&sched.reader, !mio::Ready::writable()),
            Direction::Write => (&sched.writer, mio::Ready::writable()),
        };

        atomic_waker.register(&cx.waker());

        if sched.readiness.load(SeqCst) & ready.as_usize() != 0 {
            atomic_waker.wake();
        }
    }
}

impl Drop for Inner {
    fn drop(&mut self) {
        // When a reactor is dropped it needs to wake up all blocked tasks as
        // they'll never receive a notification, and all connected I/O objects
        // will start returning errors pretty quickly.
        let io = self.io_dispatch.read();
        for (_, io) in io.iter() {
            io.writer.wake();
            io.reader.wake();
        }
    }
}

impl Direction {
    fn mask(&self) -> mio::Ready {
        match *self {
            Direction::Read => {
                // Everything except writable is signaled through read.
                mio::Ready::all() - mio::Ready::writable()
            }
            Direction::Write => mio::Ready::writable() | platform::hup(),
        }
    }
}

#[cfg(unix)]
pub(crate) mod platform {
    use mio::unix::UnixReady;
    use mio::Ready;

    pub fn hup() -> Ready {
        UnixReady::hup().into()
    }

    pub fn is_hup(ready: &Ready) -> bool {
        UnixReady::from(*ready).is_hup()
    }
}

#[cfg(windows)]
pub(crate) mod platform {
    use mio::Ready;

    pub fn hup() -> Ready {
        Ready::empty()
    }

    pub fn is_hup(_: &Ready) -> bool {
        false
    }
}